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Abstract. Two types of particles, A and B with their corresponding antiparticles, are defined in a one-
dimensional cyclic lattice with an odd number of sites. In each step of time evolution, each particle acts
as a source for the polarization field of the other type of particle with nonlocal action but with an effect
decreasing with the distance: A → · · · B̄BB̄BB̄ · · · ; B → · · ·AĀAĀA · · · . It is shown that the combined
distribution of these particles obeys the time evolution of a free particle as given by quantum mechanics.

PACS. 03.65.Bz Foundations, theory of measurement, miscellaneous theories (including Aharonov-Bohm
effect, Bell inequalities, Berry’s phase) – 03.65.Ca Formalism

The modeling of physical reality by means of fictitious
particles that move and react in a substrate of differ-
ent geometrical structures has been a fruitful strategy
that has extended our analysis capabilities beyond the do-
main associated with differential equations [1]. The par-
ticles involved in these models are classical in the sense
that they are given precise location and velocity. This
is clearly inadequate for the modeling of quantum sys-
tems that require, not only the indeterminacies imposed
by Heisenberg’s principle, but also nonlocal correlations
between commuting observables, suggested by the Einstein
Podosky Rosen argument [2] and empirically established
in the violation of Bell inequalities [3,4]. However this does
not forbid the modeling of quantum systems if we do not
identify the particles of the model with the quantum parti-
cles. It is possible, as will be seen in this work, to associate
the real quantum particle to a combined distribution of
two types of fictitious particles with nonlocal interaction.
This simple example model can be trivially extended to
higher dimensions of space and to a higher number of non-
interacting quantum particles and it provides a new point
of view to study the peculiarities of quantum mechanics.

Let us assume a one-dimensional lattice with N sites
on a circle and lattice constant a. We assume N to be
an odd integer. The reason for this restriction will become
clear later. The inclusion of even values for N would intro-
duce unwanted complications in the model. Each site can
be occupied by any number of particles of type A, B or
by their corresponding antiparticles Ā, B̄. Particles and
antiparticles of the same type annihilate in each site of
the lattice leaving only the remaining excess of particles
or antiparticles of both types A and B. At each time step,
t → t + 1, corresponding to a time evolution by a small
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amount τ , the particles of type A create antiparticles B̄
in the same site, particles B in the first neighboring sites,
B̄ in the second neighboring sites and so on. In a similar
way, particles B create particles A and Ā

A −→ · · · B̄ B B̄ B B̄ · · ·
B −→ · · · AĀA ĀA · · · (1)

The same reactions occur exchanging particles and an-
tiparticles. This creation process extends to the right and
left of each site up to the two opposing sites in the cir-
cle. Since N is odd, in these two sites particles of the
same sign (either particles or antiparticles) are created.
The number of particles or antiparticles created decreases
with the distance d roughly like 1/d2 for a distribution of
particles confined in a small region within a large lattice
as will be precisely stated later. Before we write the mas-
ter equation for the time evolution, we can notice some
qualitative features of the process. It is easy to see that
the process has diffusion. If we start, for instance, with
some number of A particles in one site, after two time
steps, some Ā antiparticles have been created at the same
site reducing the number of A particles, but also some A
particles appear in the first neighboring sites. The net ef-
fect is diffusion. It is less obvious that, even though the
process has left-right symmetry, we may also have drift to
the right or to the left. In order to see how this is possi-
ble we notice that A particles reject B particles from the
site because B̄ are created there, whereas B particles at-
tract neighboring A particles to his site. Therefore if we
have an asymmetric configuration like AB, the center of
the combined distribution will move towards B. The drift
direction and velocity is then encoded in the shape and
relative distribution of both types of particles. We will
see that, although the distribution of particles are widely
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distorted after few time steps, the drift direction and ve-
locity remain invariant.

A convenient way to label the sites of the circular lat-
tice is by an index s running from −L to L. Since the num-
ber of sites N = 2L+ 1 is odd, the index s will be integer.
It is of course irrelevant which site has the label s = 0.
Let as(t) and bs(t) be the number of particles of type A
and B respectively at the site s at time t, normalized in a
way that will be specified later (anyway the master equa-
tion is independent of the normalization). When as(t) or
bs(t) take negative values they denote the number of an-
tiparticles. At a particular site of the lattice, the number
of particles change as particles or antiparticles are created
in it by the particles in other sites. The time evolution of
the process is then defined by the equations

as(t+ 1) = as(t) + τg2
L∑

d=−L
b[s+d](t)F (d)

bs(t+ 1) = bs(t)− τg2
L∑

d=−L
a[s+d](t)F (d), (2)

where the square brackets in the index, [s + d], denotes
“modulo N”, that is, with a value in the closed inter-
val [−L,L]; g is related to the lattice constant a by g =
(2π)/(Na) (it corresponds to the reciprocal lattice con-
stant); τ is a time scale small enough to make τg2N2 � 1,
and the function of the distance F (d) is defined as

F (d) =
1
N

L∑
k=−L

k2ei 2π
N kd

=


(−1)d

cos(πd/N)
2 sin2(πd/N)

if d = ±1,±2, ...,±L
1
12

(N2 − 1) if d = 0
.

(3)

For later use we define a similar function G(d) as:

G(d) =
i
N

L∑
k=−L

kei 2π
N kd

=


(−1)d

2 sin(πd/N)
if d = ±1,±2, ...,±2L

0 if d = 0
. (4)

The alternating sign in the definition of F (d) corresponds
to the fact that particles and antiparticles are created at
alternating sites, and the different sign in equation (2)
is due to the difference in the role of particle and an-
tiparticle in relation (1). If the particles are confined in
a small region within a large lattice, the main contribu-
tion in the sums of equation (2) comes from terms with
distance |d| � N . In this limit we have |F (d)| ≈ 1/d2 as
mentioned before.

The number of A or B particles are not conserved in
the time evolution. Neither is the sum of particles con-
served. A quantity that is approximately conserved in the

time evolution of the process is the sum of the square of
the number of A particles (or antiparticles) plus the sum
of the square of the number of B particles (or antiparti-
cles). This approximately conserved quantity can be used
for normalization and can be given a physical meaning
like energy density or probability density. It is therefore
relevant to define a combined distribution a2

s(t)+b2s(t), as-
sociated to this approximately conserved quantity. We will
see that the drift velocity of this combined distribution,
given by

〈V 〉 = 4g
∑
s,r

as(t)br(t)G(s− r), (5)

is also approximately conserved in the time evolution.
Given a distribution {as(t), bs(t)}, we can change the drift
velocity by an amount v, without changing the shape of
the combined distribution by means of the local transfor-
mation

a′s(t) = as(t) cos(vas/2)− bs(t) sin(vas/2)
b′s(t) = as(t) sin(vas/2) + bs(t) cos(vas/2). (6)

Both quantities mentioned are “approximately” and not
strictly conserved due to the discrete nature of the model.
We will see that taking smaller time steps τ leads to
better conservation. These features have been checked in
a computer simulation of the process. A circular lattice
with N = 801 sites (L = 400) and with lattice con-
stant a = 1 was chosen. Several shapes of initial distri-
butions were tried: Gaussian, uniform and random, with
several widths and drift velocities. The time dependence
of M(t) =

∑
s(a

2
s(t)+b2s(t)) and of the drift velocity given

in equation (5) was studied. Taking a time step τ = 10−3,
we found that these quantities remain constant after t =
1000 time steps, with a relative variation less than 10−5

for the Gaussian case, 4× 10−4 for the uniform distribu-
tion, and 0.04 for the random distribution. For larger time
steps, τ = 0.005, these quantities remain constant (less
than 1% relative variation) for the Gaussian and uniform
case at t = 1000 but the random case begins to show sig-
nificant departure from constancy. At τ = 0.010 only in
the Gaussian case these quantities remain constant (less
than 0.1%). The time evolution of the shape of the com-
bined distribution is strongly reminiscent of the time evo-
lution of quantum mechanical wave packets. For instance,
a Gaussian distribution for A and B particles, modified by
equation (6) in order to have drift, will evolve increas-
ing the width and drifting but maintaining the Gaussian
shape. A uniform distribution will develop side lobes in
the evolution. A remarkable feature is that the process
smooths out the random fluctuations of an initial distri-
bution.

The resemblance of the process with quantum mechan-
ics is striking. We will indeed show that the process here
defined corresponds to a quantum mechanical free particle
in a lattice. An extensive numerical simulation of the pro-
cess is therefore not necessary because quantum mechan-
ics provides a faithful representation for it. Let us define
then an N -dimensional Hilbert space spanned by a basis
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{ϕs} s = −L,−L+ 1, · · · , L corresponding to the eigen-
vectors of the position operator X . Then, Xϕs = asϕs.
In this finite dimensional Hilbert space, we can not define
the momentum operator P by means of the usual com-
mutation relation. The alternative way to define P is to
choose first an unbiased basis [5–7] {φk},

φk =
1√
N

L∑
s=−L

ei 2π
N ksϕs, (7)

and with it, we define the momentum by the spectral de-
composition

P =
L∑

k=−L
gkφk〈φk, ·〉

=
1
N

∑
k,s,r

gkei 2π
N k(s−r)ϕs〈ϕr , ·〉. (8)

The momentum eigenvalues and the relative phases to
build the basis {φk} have been chosen such that P is the
generator of translations. That is, with this choice, the
operator Ua = exp(−iaP ) is such that Uaϕs = ϕs+1.
The translation is cyclic at the border, UaϕL = ϕ−L. If
we had taken N even, the right hand side of this equa-
tion should have a minus sign. This would complicate
the model of relation (1) introducing a change of sign at
some appropriated places. In order to have a simple lattice
model for the quantum free particle we prefer to restrict
ourselves to odd values of N .

The state of a free quantum particle, given by

Ψ(t) =
L∑

s=−L
cs(t)ϕs, (9)

will change according to the time evolution operator (we
set ~ = 2m = 1)

Ut = exp(−iP 2t). (10)

Let us consider the evolution of the coefficients of the ex-
pansion given in equation (9), in one step of discretized
time: t0 = τt and t1 = τ(t + 1) with a small time scale τ
and t positive integer. We have

cs(t+ 1) =
L∑

r=−L
cr(t)〈ϕs, Uτϕr〉. (11)

For τ small enough such that τ‖P 2‖ � 1, that is τ �
(a/π)2, the time evolution operator can be linearized and
we obtain

cs(t+ 1) = cs(t)− iτ
L∑

r=−L
cr(t)〈ϕs, P 2ϕr〉. (12)

Using equation (8) we calculate the matrix element

〈ϕs, P 2ϕr〉 = g2 1
N

L∑
k=−L

k2ei 2π
N k(s−r). (13)

We have then

cs(t+ 1) = cs(t)− iτg2
L∑

r=−L
cr(t)F (s− r). (14)

Reordering the terms in the sum and using the “modulo
N” notation, we get

cs(t+ 1) = cs(t)− iτg2
L∑

d=−L
c[s+d](t)F (d). (15)

Finally if we explicitly write the coefficients with real and
imaginary part, cs(t) = as(t) + ibs(t), we get equation (2)
above.

We can here check that M(t) =
∑
s |cs(t)|2 is approx-

imately conserved

M(t+ 1) = M(t)

+ τ2g4
∑
r,u

cr(t)c∗u(t)
∑
s

F (r − s)F (s− u). (16)

The term linear in τ vanishes because the symmetric func-
tion F appears multiplied by an anti-symmetric factor. We
see here that the “derivative” (M(t + 1) −M(t))/τ van-
ishes like τ in agreement with the numerical simulation of
the process. We can write the functions F in their sum-
mation representations and, performing the sum over s,
we get

∑
s

F (r − s)F (s− u) =
1
N

L∑
k=−L

k4ei 2π
N k(r−u). (17)

This sum can be evaluated as was done in equations (3,
4) but we don’t need it. In the limit N � d = r− u, that
is, when the particles are confined in a small region of a
large lattice, we get

M(t+1)=M(t)+τ2π
4

5

(
2
∑
r 6=u

cr(t)c∗u(t) (−1)(r−u)

(r−u)2 +M(t)
)
·

(18)

A similar result is obtained for the drift velocity, propor-
tional to the expectation value of P

〈P 〉t = −ig
∑
s,r

c∗s(t)cr(t)G(s − r). (19)

In terms of as(t) and bs(t) this equation becomes the equa-
tion (5) above. Here again, considering the time evolution
〈P 〉t+1, the term linear in τ vanishes because it contains∑
s[F (u − s)G(s − r) − G(u − s)F (s − r)] which is zero

as can be calculated with the summation representation
of the functions F and G. We obtain then

〈P 〉t+1 = 〈P 〉t − iτ2g5

×
∑
u,v

c∗u(t)cv(t)
∑
s,r

F (u− s)G(s− r)F (r − v).

(20)
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showing that the drift velocity is constant to order τ , that
is, the “derivative” vanishes with τ in agreement with the
numerical simulation of the process. Finally, applying a
boost transformation exp(iXv/2) to the state of equa-
tion (9), we prove equation (6).

The one-dimensional lattice model here presented pro-
vides a simple representation for the position and momen-
tum of a free quantum mechanical particle. In this model
we require that N should be odd. Let us see what hap-
pens in the case where N is even. In this case, the model
evolves according to equation (2) with the summations
running from −N/2 to N/2 and with the same function
F (d) defined in equation (3). Notice that this function
vanishes at the extreme values of d, that is F (±N/2) =
0. This model can be interesting in itself but it is no
longer equivalent to the quantum mechanical system.
The connection is lost in the step from equation (14) to
equation (15). For the cases when the argument s −
r of the function F in equation (14) take values ex-
ceeding N/2, we should introduce a minus sign if we
want to change the argument to d as in equation (15)
(in the case N odd, no sign change is needed). The
reason for this change can be traced to the change
in sign produced by the translation operator when
the site labeled by ±L is crossed as mentioned after
equation (8). It would be possible to include even val-
ues for N but at the cost of complicating the model. For
this we would have to change the rules of relation (1) ex-
changing particles and antiparticles when we cross the site
with label ±L. These complications are unwanted and we
prefer to accept the fact that position and momentum of a
quantum mechanical particle can be easily modeled only
with a cyclic lattice with an odd number of sites. In the
case of a quantum particle confined in a very small region
(say, 10 sites) of a very large lattice (say, close to one mil-
lion sites) it doesn’t matter whether N is even or odd for
all times until, due to drift or diffusion, the distribution
reaches the sites with label close to ±N/2. However for
small lattices and for extended distributions it does mat-
ter, and only in the odd N case the model of relation (1)
describes a quantum mechanical particle. This is a further
indication of the essential nonlocal character of quantum
mechanics. There is another case in quantum mechanics
where an even or odd number of states has important
qualitative consequences. This is in finite dimensional real-
izations of angular momentum. Whereas intrinsic angular
momentum, the spin, of a particle can have an even or odd
number of states, the orbital angular momentum, arising
from position and momentum, can only have a realization
with an odd number of states.

The model presented can be extended from the free
particle to the case of a position dependent potential. The

general structure of the process shown in relation (1) re-
mains unchanged but the function F of equation (2) will
not be given by equation (3) but will have to be calculated
from an appropriate time evolution operator. The process
can also be extended to two or three space dimensions
but with larger computer requirements for the numerical
simulations.

Since the advent of quantum mechanics, there have
been numerous attempts to develop a classical image for
quantum behavior. For the reasons already mentioned
at the beginning, the attempts in terms of particles are
doomed. The model here presented, besides being a “di-
vertissement” in theoretical physics, also suggests the pos-
sibility of a classical image for quantum mechanics in
terms of two fields A(x, t) and B(x, t) where each field
acts as a source for the polarization of the other. Indeed,
in the continuous limit, the particles and antiparticles of
this work become creation and destruction quanta of two
fields that turn out to be the real and imaginary part of
the wave function; Ψ(x, t) = A(x, t)+iB(x, t). The contin-
uous extension of equations (2, 3) provide the equations
of motion for the fields that are equivalent to Schrödinger
equation. This continuous study has been done somewhere
else [8] and suggests an interpretation of quantum mechan-
ics as a classical field theory, not more weird than classical
electrodynamics. These considerations may provide a new
point of view for studying the peculiarities of quantum
mechanics.
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